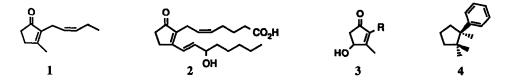
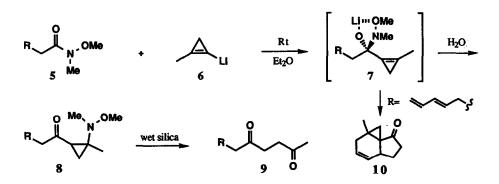
A Facile Synthesis of 1,4-diketones


Rolf Bergman^a, Bo Nilsson^b and Börje Wickberg*

Organic Chemistry 2, Lund Institute of Technology, P.O.B. 124, S-221 00 Lund, Sweden.

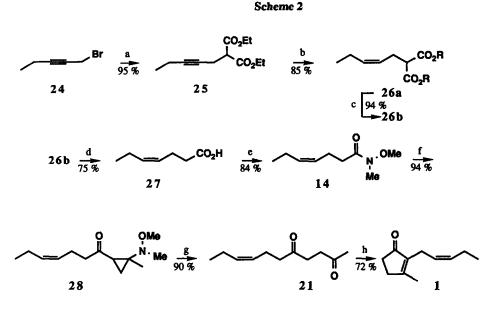
^{a)}Present address Division of Organic Chemistry, AB Hässle, S-431 83 Mölndal, Sweden.
^{b)}Present address Division of Organic Chemistry, Ferring AB, S-200 62 Malmö, Sweden.


Summary: 1,4-Diketones may conveniently be synthesized by the addition of 2-methylcyclopropenyllithium to N-methoxy-N-methylcarboxamides followed by hydrolysis of intermediate cyclopropyl ketone adducts on silica gel. The new method has been applied to the synthesis of *cis*-jasmone.

A variety of methods¹⁻⁷ have been designed for the synthesis 1,4-diketones, which are important intermediates in the synthesis of many natural products, such as *cis*-jasmone (1), prostaglandin B_2 (2), the rethrolones (3) and cuparene (4).

In connection with a recent total synthesis of isovelleral,⁸ we studied the addition of 2-methylcyclopropenyllithium to carboxylic acid derivatives, such as acid chlorides, esters, mixed anhydrides and N-methoxy-Nmethylcarboxamides.⁹ We then discovered that 1,4-diketones may conveniently be obtained from the reaction of N-methoxy-N-methylcarboxamides 5 with methylcyclopropenyllithium (6) in ether at ambient temperature (Scheme 1). Apparently the intermediate adduct 7 eliminates N,O-dimethylhydroxylamine, which then undergoes a Michael addition to the resulting cyclopropenyl ketone with formation of the cyclopropyl ketone 8. On contact with moist silica or alumina the latter immediately hydrolyzes to the 1,4-diketone 9.

To evaluate the scope of the reaction, several N-methoxy-N-methylcarboxamides were reacted with 2-methylcyclopropenyllithium. The results are shown in Table 1.


Table 1

Addition of 2-methylcyclopropenyllithium to N-methoxy-N-methylcarboxamides. Yields after flash chromatography on silica gel.

Starting amide¹⁰ Product (1,4-diketone) Yield (%) O 79 18 11 Me n 0 II 86 **19**¹² 12 Me Ô ο OMe 90 N **20**¹² 13 Me O 0 85 21¹² 14 Me 0 C 75 22¹⁵ 15 Ňe n 0 0 OMe 55 23 16 Mo 17 17 23 Õ Me

Despite their apparent instability, the cyclopropyl ketones 8 were often obtained in good yields and with sufficient purity for ¹H NMR interpretations.¹¹ All attempts at further purification on liquid chromatography columns failed in our hands, but it proved possible to characterize the cyclopropyl ketone 8 obtained from diene amide 11 by GC-MS (high resolution).¹¹ Not unexpectedly, in a side reaction the intermediate cyclopropenyl ketone adduct 7 (from 11) also underwent an intramolecular Diels-Alder reaction with the formation of the tricyclic ketone 10 in low yield (*ca* 5 %, Scheme 1). (An analogous cyclization was utilized in the synthesis of isovelleral.⁸) As exemplified by dimethylformamide (17), it was also possible to synthesize diketone 23 from a tertiary amide, but not with the same efficiency as from 16.

The 1,4-diketones 19, 20 and 21 are easily transformed to dihydrojasmone, dehydrojasmone and *cis*-jasmone, respectively,¹² by mild base treatment in ethanol.¹³ Compound 22 is a suitable starting material for the synthesis of cuparene (4).^{14, 15} The following procedure (Scheme 2) for the synthesis of *cis*-jasmone is typical:

(a) diethyl malonate, nBu_4NHSO_4 , 6M NaOH, CH_2Cl_2 ; (b) P-2 Ni, ethylenediamine, H_2 , EtOH; (c) i) 6M NaOH, EtOH; ii) 2M HCl; (d) 170 °C, neat, 15 min, argon; (e) i) 1-chloro-N,N,2-trimethyl-1-propenylamine, CH_2Cl_2 , 22 °C; ii) N,O-dimethylhydroxyl-ammonium chloride, Et_3N , 22 °C; (f) i) 2-methylcyclopropenyllithium, Et_2O , 22 °C; ii) H_2O ; (g) SiO₂, hexane-ethyl acetate 2:1; (h) NaOH, EtOH, 22 °C, 30 h, argon.

Diethyl malonate was alkylated under phase-transfer conditions¹⁶ with 1-bromopent-2-yne¹⁷ 24 to give the diester 25.¹⁸ Hydrogenation of 25 over NaBH₄-reduced nickel¹⁹ (P-2 Ni) in ethanol containing ethylenediamine stereospecifically furnished the *cis*-olefinic diester 26a (*cis:trans* ratio > 100:1). The P-2 Ni catalyst was superior to the classical Lindlar catalyst in this case. Hydrolysis of 26a to the diacid 26b (mp 155-160 °C, dec.) and thermal decarboxylation of the latter afforded *cis*-heptenoic acid 27 (bp₁₅ 110-112 °C).²⁰ Reaction of 27 with 1-chloro-N,N,2-trimethyl-1-propenylamine²¹ gave the acid chloride, which was transformed directly to the N-methoxy-N-methyl amide 14 by reaction with N,O-dimethylhydroxylamine.⁹ Addition of 2-methylcyclopropenyllithium^{22, 23} to 14 and quenching of the reaction with water gave the cyclopropyl ketone 28, which underwent a retroaldol type reaction to give *cis*-8-undecene-2,5-dione 21 when chromatographed on silica gel.²⁴ On gentle base treatment,¹³ 21 cyclized to *cis*-jasmone (yield 65 % from 28).

The increasing availability of various substituted cyclopropenes²⁵ should allow variations in the cyclopropane derived part of the 1,4-diketones, thus expanding the prospective usefulness of the method.

Acknowledgements: We thank Dr. Westlon Pimlott for performing the GC-MS high resolution experiment. Generous grants from The Swedish Board for Technical Development and The Swedish Natural Science Research Council are gratefully acknowledged.

References and notes:

- 1. R. A. Ellison, Synthesis, 1973, 397.
- 2. S. Aoki, T. Fujimura, E. Nakamura, I. Kuwajima, Tetrahedron Lett., 1989, 30, 6541.
- 3. A. Pecunioso, R. Menicagli, J. Org. Chem., 1988, 53, 2614 and references cited therein.
- 4. T. Sato, H. Okazaki, J. Otera, H. Nozaki, J. Am. Chem. Soc., 1988, 110, 5209 and references cited therein.
- 5. V. Fiandanese, G. Marchese, F. Naso, Tetrahedron Lett., 1988, 29, 3587 and references cited therein.
- 6. J. E. McMurry, T. E. Glass, Tetrahedron Lett., 1971, 12, 2575.
- 7. E. Wenkert, B. L. Buckwalter, A. A. Craveiro, E. L. Sanches, S. S. Sathe, J. Am. Chem. Soc., 1978, 100, 1268.
- R. Bergman, T. Hansson, O. Sterner, B. Wickberg, to be published. A preliminary account has been presented at The First Princess Chulabhorn Sci. Congr. 1987, Int. Congr. on Nat. Prod. Proc. Vol. III, 136, Mahidol University, Bangkok, 1989. Isovelleral is a fungal sesquiterpene isolated from *Lactarius* species, see G. Magnusson, S. Thorén, B. Wickberg, *Tetrahedron Lett.*, 1972, 1105.
- 9. S. Nahm, S. Weinreb, Tetrahedron Lett., 1981, 22, 3815.
- Compounds 11-17 were prepared by the general procedure of Nahm and Weinreb⁹. All gave appropriate ¹H NMR, ¹³C NMR, infrared and mass spectra.
- 11. Spectral data for the cyclopropyl ketone 8 obtained from 11: ¹H NMR (500 MHz, CDCl₃) δ 6.3 (m, 1H). 6.07 (m, 1H), 5.07 (m, 1H), 5.08 (d, 1H, J= 16.6 Hz), 4.96 (d, 1H, J= 10.3 Hz), 4.43 (br. d, 1H, J= 2 Hz), 3.55 (s, 3H), 2.58 (dd, 1H, J= 2.0, 16.2 Hz), 2.56 (s, 3H), 2.45 (dd, 1H, J= 2.0, 16.2 Hz), 2.31 (m, 2H), 2.2 (t, 2H, J= 6.4 Hz), 1.54 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.77, 137.12, 133.98. 131.41, 115.06, 102.17, 92.26, 60.87, 39.75, 35.73, 29.64, 27.72, 24.84. GC-MS (VG ZAB HF spectrometer, 70 eV, 200 mA, 150 °C, manual peak matching) m/z 223.1575±5 ppm (M⁺); C₁₃H₁₉NO₂ req. 223.15722.
- 12. J.-L. Moreau, R. Couffignal, R. Arous-Chtara, Tetrahedron, 1981, 37, 307.
- 13. G. Büchi, H. West, J. Org. Chem., 1966, 39, 977.
- 14. C. Enzell, H.Erdtman, Tetrahedron, 1958, 4, 361.
- 15. T. Kametani, M. Tsubuki, H. Nemoto, Heterocycles, 1979, 12, 791.
- 16. A. Brändström, U. Junggren, Tetrahedron Lett., 1972, 473.
- 17. H. Sprecher, S. K. Sankarappa, Methods Enzymol., 1982, 86, 357.
- 18. This is an improved preparation of diester 25, cf. O. P. Vig, M. L. Sharma, R. Gauba, Indian J. Chem., Sect. B, 1985, 24 B, 313.
- 19. C. A. Brown, V. K. Ahuja, J. C. S. Chem. Comm., 1973, 553.
- 20. M. F. Ansell, J. C. Emmett, R. V. Coombs, J. Chem. Soc. (C), 1968, 217.
- 21. A. Devos, J. Remion, A. M. Frisque-Hesbain, A. Cotens, L. Ghosez, Chem. Comm, 1979, 1180.
- 22. R. Köster, S. Aurora, P. Binger, Liebigs Ann. Chem., 1973, 1219.
- 23. O. A. Nesmeyanova, T. Yu. Rudashevskaja, E. A. Alexandrova, B. A. Kazanskii, Bull. Acad. Sci., SSSR, 1971, 1503.
- 24. Acidic work up (2M sulfuric acid) reduced the yield of 20 to less than 50 %.
- 25. See e.g.: A. T. Stoll, E. Negishi, Tetrahedron Lett., 1985, 26, 5671; M. S. Baird, W. Nethercott, Tetrahedron Lett., 1983, 24, 605.

Received in UK 28 February 1990)